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Abstract-.An inverse model is presented for determining the strength of the temporal dependent heat 
source when the prior knowledge of the source functions are not available in the two-dimensional heat 
conduction problem. This model is constructed from the finite difference approximation of the differential 
heat conduction equation based on the assumption that the temperature measurements are available over 
the problem domain. In contrast to the traditional approach, the iteration in the proposed model can be 
done only once and the inverse problem can be solved in a linear domain. Three examples are used to show 

the usage of the proposed method. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

The estimation of the boundary condition has received 
a great attention 1.n the inverse heat conduction prob- 
lem [l-8]. The inverse boundary problem is to esti- 
mate the boundary conditions from the knowledge of 
the temperature measurements taken at the interior 
point of the solid. They have extensive applications in 
many design and manufacturing problems in which 
the boundary condition is incomplete specification. 
However, there are only limited numbers of researches 
that work in the inverse heat source problem [9-lo]. 
The inverse source problem is to estimate the strength 
of the heat sour’ce from the temperature measured 
at a different point other than the source’s location. 
However, the problem has only been investigated with 
a one-dimensional inverse source problem, while the 
multi-dimensional problem still needs to be explored. 

In the inverse analysis, most studies employed the 
nonlinear least-squares method [1 l-131 to determine 
the inverse probl,em. This method minimizes the for- 
mulation from the sum of the squares of the difference 
between the experimental measurements and the cal- 
culated response Iof the system. Based on the nonlinear 
least-squares method, various researchers have put 
their efforts in the field of inverse problems. In solving 
the problems, different algorithms have been adopted 
such as the conjugate gradient method, the Davidson- 
Fletcher-Powell method, the Monte-Carlo technique, 
the covariance analysis, and the dynamic program- 
ming. More sophisticated methods also have been 
developed such as the nonlinear least-squares for- 
mulation modified by the addition of a regularization 
term, the sequential estimation approach, and the 
adjoint equation approach coupled to the conjugate 
gradient method [l-7]. There are a few drawbacks in 

the above approaches. One is that the iterative process 
in the computation cannot be avoided. The other is 
that the inverse problem can only be solved in a non- 
linear domain. 

The purpose of this research is to propose an 
approach to replace the nonlinear least-squares 
method so that the iterative calculations in the analysis 
and optimization phases can be eliminated in the 
inverse heat source problem. In the proposed method, 
a linear inverse model is constructed to represent the 
undetermined heat source explicitly. 

In the process of constructing the linear model, the 
strength of the heat source is represented by the series 
form first. Then, the series form of the heat source 
and the approximation form of the heat conduction 
equation are rearranged. Finally, the available tem- 
perature field are substituted into the approximation 
model. As a result, the approximation model becomes 
a linear combination of the unknown coefficients for 
the strength of the heat source and then this linear 
inverse model can lead to solving the problem through 
the linear least-squares error method. The advantage 
of this approach is that the computation in the process 
can be done only once and the inverse problem can 
be solved in a linear domain. In this paper, only the 
linear case is considered. That means there are no 
temperature-dependent coefficients in the heat equa- 
tion or in the boundary conditions. In the nonlinear 
problems, the present analysis can be used to compute 
the associated linearized equations. Furthermore, it 
is not difficult to extend our analysis to the various 
geometries in spatial domains. 

DESCRIPTION OF THE PROPOSED METHOD 

Consider an infinitely long bar with constant ther- 
mal properties and with a square-cross-section in 
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NOMENCLATURE 

A stiffness matrix of heat equation w bound of random number 
b vector of source function fi upper bound of the index of 
a undetermined variable coefficients. 
s estimated heat source function 
S coefficient matrix of b 
T temperature vector 

Subscripts 

T temperature i,j, k indices 
exact 

t temporal coordinate 
exact temperature 

m index of undetermined coefficients 
x9 Y spatial coordinate. null non-measured matrix 

Greek symbols 
measurement measurement temperature. 

J/ basis function 
Ax, Ay increment of spatial coordinate Superscripts 
At increment of temporal domain i, j, k indices 
8 coefficient vector of b, solution vector meas measured temperature vector 
1 random number null non-measured matrix. 

which each side is one unit (see Fig. 1). The adiabatic 
conditions are applied at the side of x = 0 and y = 1. 
The isothermal conditions are applied at the side x = 1 
and y = 0. It is initially at a uniform temperature T,, 
and then suddenly a heat source function s(t) is 
applied at x = R and y = J. A dimensionless math- 
ematical formation of the two-dimensional heat con- 
duction problem is presented as follows : 

$+ $+s(t)s(x-a,y-r) = g 

O<x<l, O<y<l r>o (1) 

T(x,y,O)=T,,=l O<x<l O<y<l t=O 

Y=l 

Fig. 

aT(x, Y, 0 
ax =o x=0 O<y<l t>O (5) 

a T(;;yy ‘) = 0 0 < x < 1 y = 1 t > 0 (6) 

where s(t) is the strength of the heat source and 
6(x - 2, Y-J) is Dirac delta function. 

The inverse problem is to identify the strength of the 
heat source s(t) from the temperature measurements 
taken at one of the interior points of the bar. Suppose 
that the applied heat source term s(t) are represented 
in the following series form in a certain time domain : 

(7) 

T(l,y,t)= 1 x= 1 O<y< 1 t>O (3) where tim(t) can be any non-singular function in the 
T(x,O,t)=l O<x<l y=O t>O (4) problem domain, a, is the coefficients, and TV is a 

positive integer. 
For illustration, the implicit finite-difference 

Y Wx, y. t) = o methods is used to execute the analysis process. After 
discretization, the above governing equation is com- 
bined with s(t) and can be expressed as the following 
recursive form : 

where Ax and Ay are the increment of the spatial- 

x 

coordinate and At is the increment of the temporal- 
X = 0 T (x, 0, t) = 1 x=1 coordinate, i is the ith grid along with x-coordinate, j 

1. A square cross-section of an infinitely long bar. is the jth grid along with y-coordinate, k is the kth 
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grid along with temporal-coordinate, and Tijk is the @I’D)-‘DT is the reverse matrix of the undetermined 
temperature at the grid point (i,j, k). heat source and is denoted as R. 

Using the recursive form a matrix equation for the 
direct analysis can be expressed as 

AT=b (9) 

where A is a stiffness matrix. It is constructed from 
the thermal properties, the spatial-coordinate, the 
temporal-coordinate, the boundary conditions and 
the initial condition. The components of T are the 
unknown temperature in the discretized points, and 
the components of h are the functions of the boundary 
condition, the initial condition, and the source term. 

In the inverse analysis, A can be constructed accord- 
ing to the known physical model and numerical 
methods and T can be measured by the ther- 
mocouples. In this problem, the boundary condition 
and the initial (condition are known and the 
coefficients of s(t) is the main task to be resolved. 
Decoupling the coefficients of s(t) from b will transfer 
the direct formulation to the following form : 

AT = SO (10) 

where b = SO. S is the coefficient matrix of b and B is 
the coefficient vector of b. S is a constant matrix. The 
components of 8 are the functions of the unknown 
variables Q, in equation (7). 

In equation (14), the inverse problem is solved by 
the linear least-squares error method. As such, the 
iterative process in the problem can be avoided, and 
the problem is solved in a linear domain. Furthermore, 
it can be verified that the final solution, i.e. equation 
(14), from the proposed method is the necessary con- 
dition of the optimum from the traditional nonlinear 
least-squares approach [lo]. In the inverse problem, 
it is important to investigate the stability of the esti- 
mation. Usually, a minor measurement error makes 
the estimation away from the exact solution in the ill- 
posed inverse problem. The methods of future time 
and regularization have been widely used to stabilize 
the results of the inverse estimation [2, 31. Those 
methods impose the physical condition onto the prob- 
lem and increase the computational load in the esti- 
mated process. Consequently, the stability of the 
problem can be increased, while the computational 
load of the problem is also increased. In the present 
research, it is possible to stabilize the estimated results 
through a smooth process [ 141. This method computes 
a ‘moving average’ of the estimation. The results of 
data is the average of the N-point around the current 
point. In this process, N must be an odd number. 
Then, the efficiency of the estimation can be arisen. 

The inverse matrix of A is multiplied into both sides 
of equation (lo), we have 

T=A-‘Sfl=Cfl (11) 

where C = A-IS a.nd T is the temperature vector in 
the bar. In the inverse analysis, there are only a few 
components of T needed to be measured in order to 
identify the strength of the heat source. Therefore, 
only vector T”“” and matrix D that correspond with 
the measured grids need to be constructed. Thus, 
equation (11) can be shown as follows : 

In solving equation (14), the number of measure- 
ments needs to be sufficient so that the rank of the 
reverse matrix is equal to the number of undetermined 
coefficients. Otherwise, equation (14) will be under- 
determined and the problem cannot be solved through 
the proposed method. In general, when a large amount 
of the measurements are selected, the cost for com- 
putation and experiment increase. Yet, the accuracy 
of the estimated results increase as well. Furthermore, 
it is possible to recognize the existence and uniqueness 
of the solution when the rank of the reverse matrix is 
equal to the number of the unknown variables. If the 
matrix equation [equation (13)] is consistent (i.e. the 
measurement errors are not considered), the solution 
exists and is unique. If the matrix equation is in- 
consistent, a unique least-squares solution can be 
approximated. 

where 

T”“” and Dnu,, are the part of matrices of T and C ; 
they correspond with the non-measured grids. 

The relationship between the measured temperature 
Tmeas and the undetermined coefficients 0 can be rep- 
resented in the foll.owing form : 

T”“” = DO. (13) 

Then, 0 can be solved by the linear least-squares error 
method as follows : 

0 := (DTD) - 1 DTT=+~ (14) 

RESULTS AND DISCUSSION 

In this section, problems defined from equation (l)- 
(6) are used as examples for the proposed method for 
estimating the strength of the heat source. We have 
chosen a stepwise variation over time for the source 
strength in the first example, a triangular variation in 
the second example, and a sinusoidal-exponential- 
polynomial function in the third example. The first 
example is used to demonstrate the uniqueness of the 
solution through the numerical values when the mea- 
sured points are at the same distance from the source 
location and the same condition from the boundaries. 
The second example is used to compare the accuracy 
and robustness of the estimated results when the mea- 
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sured points are at different distances from the source 
location. The third example is used to demonstrate 
the accuracy and robustness of the estimated results 
when measurement errors are increased. The exact 
temperature and source term used in the following 
examples are preselected so that these functions can 
satisfy equation (l)-(6). The accuracy of the proposed 
method is assessed by comparing the estimated results 
with the preselected strength value of the heat source. 
Meanwhile, the measured temperature is generated 
from the preselected exact temperature in each prob- 
lem and it is presumed to have measurement errors. 
In other words, the random errors of measurement 
are added to the exact temperature. It can be shown 
in the following equations : 

and 

111 <w (16) 

where 1 is the random error of measurement, and w 
is the bound of the 1. Tcxact in equation (15) is the 
exact temperature. T meaS”rement is the measured tem- 
perature at the grid points and it is the component of 
the vector T”‘““. 

The time domain in all cases is from 0 to 0.3 with 
0.01 increments and the increment of spatial coor- 
dinates are also 0.1. When the prior knowledge of the 
source functions are not available, the estimated heat 
sources need to be expressed by 30 coefficients 
(fi = 30) and each coefficient represents the heat 
source at a specific temporal-grid in each example. 
For example, a, is the value of s(t) at t = 0.01, a2 is 
the value of s(t) at t = 0.02, a, is the value of s(t) at 
t = t, = 0.01 x m and so on. In the examples, the 
value of $m(t) is equal to one when t = t,. When 
t # t,, the value of t+bm(t) is vanished. The estimated 
results of the source strength from the knowledge of 
the temperature at measurement points are examined. 
The estimated results are also smoothed and the num- 
ber of the surrounding points is three in all examples. 
As a result, when measurement errors are not 
considered, the results have excellent approximations. 
It shows that the estimated result is converged to 
the exact solution in all examples. Furthermore, it is 
confirmed that the solution exists and it is unique 
through the verification of the proposed method. 
However, when measurement errors are included, the 
estimated results are deviated from the exact solution. 
Through the proposed method, it is proved that the 
unique least-square solutions exist in all examples. 
The following three examples demonstrate the appli- 
cation of the proposed approach. Detailed descrip- 
tions for the examples are shown as follows : 

Example 1 
Consider a bar with L = 1 (see Fig. 1). A stepwise 

variation of the strength of the heat source located at 
(2 = 0.5, J = 0.5) is defined as : 

_1 _ - - x - - Bstimated @x=0.5, y=O.4 
+ Estimated @x=0.6, y=O.5 

-1.5 1 / I I I I 

0 0.06 0.12 0.18 0.24 0.3 
Temporakoordiaate 

Fig. 2. Estimation of the stepwise heat source h,(t) on four 
different measured positions that have the same distance 
from the source location in example one (measurement errors 

w = 1%). 

h,(t) = 1 0 < t < 0.15 

h,(t) = 0 0.15 < t < 0.3 (17) 

which represents a stepwise variation over time. In 
the first example, one measured point is allocated at 
(x = 0.4, y = 0.5), (x = 0.5, y = 0.4), (x = 0.5, 
y = 0.6), or (x = 0.6, y = 0.5). 

The estimated results are shown in Fig. 2 for 1% 
measurement errors and in Fig. 3 for 2% measurement 
errors. In general, large errors make the estimated 
results away from the exact solution. The results 
shown in Fig. 3 (w = 2%) have much larger deviations 
from the exact solution than those in Fig. 2 (w = 1%). 
From the numerical results shown in Figs 2 and 3, the 
estimated results from the measured points at x = 0.4, 
y = 0.5 and x = 0.5, y = 0.6 are the same. Further- 
more, the estimated results from the measured points 
at x = 0.5, y = 0.4 and x = 0.6, y = 0.5 are the same. 
The reason for that is that the four measured points 
are at the same distance from the source point, and 
each pair of measured points (i.e. x = 0.4, y = 0.5 
and x = 0.5, y = 0.6; x = 0.5, y = 0.4 and x = 0.6, 
y = 0.5) have the same condition from the boundaries. 

lJ 5 

0 0.06 0.12 0.18 0.24 0.3 
Tunporal-c5Oidkte 

Fig. 3. Estimation of the stepwise heat source h,(t) on four 
different measured positions that have the same distance 
from the source location in example one (measurement errors 

0 = 2%). 
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- + ISmated @x=0.3, y=O.S 

-1 L- I I 1 

0 0.06 0.12 0.18 0.24 0.3 
Temporal~rdiaate 

Fig. 4. Estimation of the triangular heat source h2(t) on two 
measured positions that have the different distance from 
the source location Ln example two (measurement errors 

0 = 1%). 

Example 2 
The second example is the same as example one, 

except that the sowce strength is expressed in a differ- 
ent form and it can be shown as follows : 

h*(t) = lOt+0.9 0 < t < 0.11 

h2(t) = - lot+3.1 0.11 < t < 0.3 (18) 

which represents a triangular variation over time. In 
the second example, one thermocouple is allocated 
either at the measured point x = 0.4, y = 0.5 or at 
another point x = 0.3, y = 0.5. 

The estimated results are shown in Fig. 4 for 1% 
measurement errors and in Fig. 5 for 2% measurement 
errors. From the numerical results in Figs 4 (o = 1%) 
and 5 (m = 2%), the estimated results from the mea- 
sured point x = 0.4, y = 0.5 have better estimations 
than those from the measured point x = 0.3, y = 0.5. 
It appears that a closer measured position to the 
source location needs to be taken in order to have a 
more accurate and robust estimation. 

‘r------l 
2 

1 

0 -l&act 
- IWinIated @x=0.4, y=o.s 

- Q listimated @x=0.3, y=O.S 

-1 
0 0.06 0.12 0.18 0.24 0.3 

Temporal-coordinate 
Fig. 5. Estimation of the triangular heat source h2(t) on two 
measured positions that have the different distance from 
the source location in example two (measurement errors 

w = 2%). 

+. .Ewimat&o-5% 

0 I I I 1 

0 0.06 0.12 0.18 0.24 0.3 
Temporalcoordinate 

Fig. 6. Estimation of the heat source h,(r) measured at 
(x = 0.4, y = 0.5) when measurement errors are w = 0, 1, 3 

and 5%. 

Example 3 
The third example is the same as that in example 1, 

except that the source strength is expressed in the 
following form : 

27ct 
h3(t) = sin 0.31 x e ( > -2’+tZ+1 0 < t < 0.3. (19) 

The estimated results for the measured point at 
x = 0.4, y = 0.5 are shown. In Fig. 6, the estimated 
results are approximated to the exact solution when 
measurement errors are not considered. In the same 
figure, it is also shown that the estimated results are 
accurate and robust when measurement errors are 
included. Moreover, when the measurement error is 
5%, the result is still satisfied. 

CONCLUSION 

An inverse method has been introduced for deter- 
mining the unknown strength of the heat source in 
a two-dimensional inverse conduction problem. The 
proposed inverse model is constructed from the avail- 
able temperature measurements and the finite differ- 
ence model of the differential heat conduction equa- 
tion. This model can represent the undetermined 
strength of the heat source explicitly. Three examples 
have been illustrated using the proposed method. In 
the first example, the uniqueness of the solution can 
be verified numerically when the measured points are 
at the same distance from the source location and the 
same condition from the boundaries. In the second 
example, the results show when the measured point is 
closer to the source location, the properties of the 
estimated results are more accurate and robust. In the 
third example, the estimated results are accurate and 
robust even when measurement error is 5%. The 
advantage of this method is that the strength of the 
heat source can be estimated directly and the inverse 
problem can be solved in a linear domain. It is differ- 
ent from the traditional method using nonlinear least- 
squares formulation, which requires numerous iter- 
ations in the process and needs to perform its cal- 
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culation in the nonlinear domain. The proposed 7. 
method is applicable to other kinds of inverse prob- 
lems such as initial estimation and boundary esti- 

*. 

mation in the one- or multi-dimensional heat transfer 
problems. 
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